Earth & Space Science Geology Kit Information Sheet | Mineral | Source
Location | Chemical
Formula | Hardness | Color | Streak | Cleavage /
Fracture | Uses | |-----------------------|----------------------|--|----------|--|----------------|---|--| | A. Calcite | Chihuahua,
Mexico | CaCO₃ | 3 | Commonly white, many other colors | White | Good in 3
directions; forms
rhomboids | Cement; acid
neutralizer;
abrasives | | B. Biotite mica | Ontario,
Canada | K(Mg,Fe) ₂₋₃ Al ₁₋₂ Si ₂₋₃
O ₁₀ (OH,F) ₂ | 2-2.5 | Black, brown;
transparent in thin
sheets | Brown | Perfect in 1
direction | Filler in paints;
drilling mud | | C. Quartz | Brazil | SiO ₂ | 7 | Clear, white or a range
of colors (gray, pink,
purple, etc.) | Colorless | Conchoidal
fracture | Gemstones; glass
production; foundry
sand | | D. Fluorite | Coahuila,
Mexico | CaF ₂ | 4 | Green, purple, blue,
yellow, white | White | Good in 4
directions | Hydrofluoric acid;
metallurgy | | E. Iron pyrite | Chihuahua,
Mexico | FeS | 6.5-7 | Brassy | Dark
gray | Perfect in 3
dimensions; forms
cubes | Sulfuric acid production | | F. Potassium feldspar | India | KAISi ₃ O ₈ | 6 | White, light pink,
orange | White | Good in 2
directions | Glass and ceramics | | G. Magnetite | Utah, USA | Fe ₃ O ₄ | 5-6.5 | Dark gray, black,
somewhat metallic | Gray-
black | Fracture | Principal iron ore | | H. Gypsum (selenite) | Utah, USA | CaSO ₄ ·2H ₂ O | 2 | White, yellowish, clear | White | Excellent in 3 directions | Drywall, plaster,
agricultural uses | | I. Halite | Pakistan | NaCl | 2.5 | White, clear, other colors with impurities | White | Excellent in 3 directions | Ice melt, food
seasoning | | J. Muscovite
mica | Colorado,
USA | KAl ₂ (Si ₃ AlO ₁₀)(OH) ₂ | 2-2.5 | Brown to silvery;
transparent in thin
sheets | White | Perfect in 1
directions | Filler in paint;
cosmetics; rubber;
drilling mud | | K. Chert | Oklahoma,
USA | SiO ₂ | 7 | Cream, tan, gray, or
black | White | Fracture | Jewelry; historically used to make tools (arrowheads, spears, etc.) | |-------------------------|---------------------|--|-------|--|-----------|-------------------------|---| | L. Fluorite | Coahuila,
Mexico | CaF ₂ | 4 | Green, purple, blue,
yellow, white | White | Good in 4
directions | Hydrofluoric acid;
metallurgy | | M. Hematite | India | Fe ₂ O ₃ | 5-6.5 | Red, gray, tan, black;
earthy to metallic | Brick red | Fracture | Principal iron ore;
can be attracted
to a magnet | | N. Plagioclase feldspar | India | NaAlSi ₃ O ₈ –
CaAl ₂ Si ₂ O ₈ | 6-6.5 | White, pink, orange,
gray | White | Fair in 2
directions | Building stone;
gemstones | | O. Olivine | Pakistan | (Mg, Fe)Si ₂ O ₄ | 6.5-7 | Yellow, green | White | Cleavage | Refractory material. Jewelry for good- clarity specimens | | Rock
Specimen | Source
Location | Geologic
System | Description & Major Minerals | Uses | |-------------------|---|-------------------------------|---|--| | 1. Basalt | 1. Basalt Virginia, USA Triassic | | Dense gray to black, fine-grained texture. Minerals are pyroxene, plagioclase, olivine | Building and construction, crushed aggregate | | 2. Diorite | North
Carolina, USA | Pennsylvanian
/
Permian | Gray or black/white speckled, coarse-grained texture. Plagioclase feldspars, micas, amphibole and/or pyroxene, little/no quartz | Building and construction, crushed aggregate | | 3. Granite | North
Carolina, USA | Pennsylvanian
/
Permian | Building and construction, crushed aggregate, sculpture | | | 4. Obsidian | 4. Obsidian Mexico Quaternary conchoidal fracture. Primarily SiO ₂ of | | Black, shiny, and generally opaque; glassy texture with conchoidal fracture. Primarily SiO ₂ and other materials in non-crystalline form | Jewelry, sharpened for tools and weapons, precision scalpels | | 5. Pumice | Peru | Quaternary | Light-colored with many holes (vesicular texture). Quartz, potassium and/or plagioclase feldspars, micas | Abrasives | | 6. Rhyolite (tan) | Colorado,
USA | Tertiary | Light-colored and sometimes banded appearance; fine-
grained texture. Quartz, potassium and/or plagioclase
feldspars, micas | Crushed aggregate, building stone | | 7. Shale | Virginia, USA | Ordovician | Wide range of colors including tan, gray, black, red, and green. Fine-grained clay particles and smooth texture | Crushed and decorative rock;
cement production; source of
clay minerals and
occasionally pigments | | 8. Limestone | Virginia, USA | Ordovician | Cream-colored, tan, gray or black; calcite-rich matrix. May contain fossils. Effervesces with weak acid | Concrete production;
crushed rock and building
materials; acid neutralizer;
calcium supplement | | 9. Sandstone | Tennessee,
USA | Pennsylvanian | Tan, white, brown, or red. Quartz sand grains dominate,
may also include feldspar and mica. Cement is
commonly clay, hematite, or silica | Crushed stone or building
materials (pavers, façade,
etc.); source of silica | | 10. Conglomer ate | Virginia, USA | Cambrian | Rounded rock fragments, pebbles, and sand | Few uses; building and crushed stone if the rock is well-cemented | | 11. | Bituminous
coal | Pennsylvania,
USA | Mississippian | Black, brittle rock made from altered plant material.
Can be burned | Fuel source for electricity
generation, metallurgy, and
cement production | |-----|--------------------|------------------------|---------------------------|--|--| | 12. | Siltstone | Virginia, USA | Triassic | Silt-sized particles with a fine- to gritty texture; red color comes from hematite | Crushed and decorative rock | | 13. | Gneiss | North
Carolina, USA | Cambrian | Micas, feldspars, and other minerals; may have a banded appearance | Building and decorative stone; crushed rock. | | 14 | 4. Slate | Virginia, USA | Ordovician | Fine-grained and splits along flat surfaces. Rock began as clay, shale, siltstone, or mudstone | Roofing tiles and classic blackboards; decorative and crushed stone | | 15. | Marble | Virginia, USA | Precambrian /
Cambrian | Coarse-grained crystals of calcite. Rock began as limestone or dolostone. Effervesces with weak acid | Building and sculpture
materials; crushed stone;
acid neutralizer; calcium
supplement | | 16. | Quartzite | Colorado,
USA | Ordovician | Welded and regrown sand grains; frequently white, may also be tan, cream, or pink | Building and decorative stone. | | 17 | . Schist | North
Carolina, USA | Precambrian /
Cambrian | Visible mica minerals with a glittery and layered / banded appearance | Building and construction stone; source of mica and other minerals (e.g., garnet) | | 18. | Phyllite | Virginia, USA | Precambrian /
Cambrian | Gray or dull shine; may have wavy surfaces | Few uses (the rock is usually weak); crushed rock | | Fossil | Source
Location | Geologic
System | Kingdom | Phylum /
Division | Environment and Life Habit | |-------------------|--------------------|--------------------|----------|----------------------|--| | a. Clam | Morocco | Eocene | Animalia | Mollusca | Clams have two shells of equal but mirrored shapes (unlike brachiopods) and filter-feed on the ocean floor. | | b. Gastropod | Morocco | Triassic | Animalia | Mollusca | Snails are herbivorous or carnivorous, and create a coiled shell for protection | | C. Goniatites | Morocco | Devonian | Animalia | Mollusca | Goniatites is a genus of nautiloid, a group of cephalopod mollusks similar to squid and octopuses, but having a long, conical shell | | d. Shark teeth | Morocco | Eocene | Animalia | Chordata | Sand sharks are near-shore ocean predators and shed their teeth regularly | | e. Petrified wood | Madagascar | Paleocene | Plantae | Angiosperm | Hardwood plants mineralized by silica. The red tint comes from traces of hematite | | f. Crinoid stems | Morocco | Permian | Animalia | Echinodermata | Animal with a long stalk (your fossil), on top of which was the body with mouth many arms to filter-feed. Few alive today. | | g. Trilobite | Morocco | Devonian | Animalia | Arthropoda | Animal with jointed exoskeleton; trilobite bodies are divided front-to-back with a head, thorax, and pygidium. All are extinct today | | h. Brachiopod | Morocco | Devonian | Animalia | Brachiopoda | Brachiopods have two unequally sized shells (unlike clams) and filter-feed | ## Cornerstone Educational Supply, LLC Biblical Geology at its BEST! www.cornerstone-edsupply.com info@cornerstone-edsupply.com